¢=2504 ADT Sunnnary

General T\Totesj

1. All of the “container”™ ADTs (Stack. Queue. List, Map.
Priority Queue and Set) support the following opera-
tions. -

size(): Return number of items in the container. Input:
None: Qutput: int.

isEmpty(): Return hoolean indicating if the container
is empty. Input: None: Qutput: boolean.

2. The GT and Java Collections formulations make use of

exeptions to signal the occurance of an ADT ervor such
as the attempt to pop from an empty stack. Our for-
mulation makes no use of exeptions, but simply aborts
program execution when such an error is encountered.

3. See the sheet entitled "ADT Comparison Table” for a
more detailed comparison of our ADTs and their GT
and Java Collections counterparts.

| ADT Stack- E |

A stack 1s a container capable of holding a number of objects
subject to a LIFO (last-in, first-out) discipline. It supports
the following operations.

push(o): Insert object o at top of stack. Input: E: Output:
Noue.

pop(): Remove aud return top ohject on stack: illegal if stack
is empty!. Input: None: Qutput: E.

top(): Return the object at the top of the stack, but do not

remove it: illegal if stack is empty'. Input: None; Qutput: E.

I ADT Queue E> Il
A queue is a container capable of holding a number of objects
subject to a FIFO (first-in, first-out) discipline. It supports
the following operations.

enqueue(o): Insert object o at rear of queue. Input: Object:
Output: Noue.

dequeue(): Remove and return object at front of queue;
illegal if queue is empty!. Input: None: Qutput: E.

front(): Return the object at the front of the queue. but
do not remove it: illegal if queue is empty!. Input: None:

Output: E.

‘ Iterator< E .L
An iterator provides the ability to “move forwards™ through
a collection of items one by one. One can think of a “cursor”
that indicates the current position. This cursor is initially
positioned before the first item and advances one item for
each luvocation of operation next.

hasNext(): Return true if there are one or more elements
in front of the cursor. Input: None; Output: boolean.
next(): Return the element immediately in front of the
cursor and advance the cursor past this item. Illegal if cursor
i at the end of the collection!. Input: Noue: Qutput: E.

i ListIterator- E - ll
This ADT extends ADT Iterator and applies to List objects
onlv. A list iterator provides the ability to “move” back and
fourtli over the elements of « list.

hasPrevious(): Return true if there are one or more ele-
meuts before the cursor. Input: None; Qutput: boolea.
nextIndex(): Return the index of the element that would
be returned by a call to next. Ilegal if no such item*. Input:
None; Ouiput: int.

previous(): Return the element immediately before the
cursor and move cursor in front of element. Illegal if no such

item!. Input: None; Output: E.

previousIndex(): Return the index of the element that
would be returned by a call to previous. Illegal if no such
item!.

Input: None; Qutput: int.
add(o): Add element o to the list at the current cursor posi-
tion. i.e. immediately after the current cursor position. [fn-
put: E; Qutput: None.
set(0): Replace the element most recently returned {by next
or previous) with o. Input: E: Output: None.
remmove(): Remove from underlying list the element most re-
cently returned (by next or previous). Input: None: Qutput:
None.
INOte: 11 1 1egal to have several itorators ovor the same Tiet obier However 1t o
iterator has modified the hist fusing operation remove savi. all other aterators for that
L=t become invahid Simnlatly if the underlyvang hst i~ wmodified (asng List operation add
for exampley then all iterators defined on that hist become invablid

List< ¥ >
A list is a container capatde of holding an ordered arrange-
ment of elements. The index of an element is the number of
elements that preceed it in the list.

Return the element at specified index. Illegal if
no such index exists!. Input: int; Output: E.

set(inx, newElt): Replace the element at specified index
with newElt. Return the old element at that index. Illegal if
no such index exists'. Input: int. E: Qutput: E.
add(newElt): Add element newElt at the end of the list.”
Input: B: Output: None.

add(inx, newElt): Add element newElt to the list at index

inx. Illegal if inx is negative or greater than current list size'.

Input: int. E: Qutput: None.
remove(inx): Remove the element at the specified index

get(inx):

from the list and return it. Illegal if no such index exists!.
Input: int; Output: E.

iterator(): Return an iterator of the elements of this list.
Input: None: Qutput: Tterator<E >.

listIterator(): Return a list iterator of the elements in this
list 2. Input: None: Qutput: ListIterator<E >.

! ADT Comparator- E~ !
A comparator provides a means of performing comparions

hetween objects of a particular type. It supports the following
operation.

compare{d.b): Return an integer 7 such that ¢ < 0 if a < b.
1 =0ifa=>band 1 >0if a>b Ilegalif ¢ and b cannot be
compared!. Input: E. E: OQutput: int.

! ADT Entry< K.V [r
An entry encapsulates a key and value. both of type Object.
It supports the following operatious.

getKey(): Return the key contained in this entry. Input:
Noue: Output: K.

get Value(): Return the value contained in this entry. Input:
Noue: Qutput: V.
[ADT Map- K.V -]
A liap is a contamer capable of holding a nunmber of entries.
Fach entry is a kev-value pair. Key values must be distinct.
It supports the following operations.

get(k): If map contains an entry with key equal to k. then
return the value of that entry, else return null. Input: K;
Qutput: V.

put(k. v): If the map does not have an entry with key equal
to k. add entry (k.e) and return null, else, replace with v the
existing value of the entry and return its old value. Input: K.
V. Output: V.

remove(k): Remove from the map the entry with key equal
to k and return its value: if there is no such entry. return null.
Input: K: Qutput: V.

iterator(): Return an iterator of the entries stored in the
map®. Input: None; Qutput: Iterator< Entry<K, V> >.

| ADT Position- E - |
A position represents a “place” within a tree (7.e. a node); it
contains an element (of tvpe E) and supports the following

operation.

element(): Return the element stored at this position. In-
put: None: Qutput: E.

| ADT Tree- B[
A tree is a container capable of holding a number of positions
{nodes) on which a parent-child relationship is defined. It
supports the following operations.

root(): Return the root of T: illegal if T empty'. Input:
None: Qutput: Position<E>.

parent(v): Return the parent of node v: illegal if v is root?.
Input: Position<E >: Qutput: Position<E>.

children{r): Return an iterator of the children of node v.
Input: Position< E>: Qutput: Iterator< Position<E>>.
isInternal(¢): Return boolean indicating if node v is inter-
nal. Input: Position<E>: Output: boolean.

isExternal(¢): Return boolean indicating if node v is a leaf.
Input: Position< E>: Qutput: boolean.

isRoot(¢): Return boolean indicating if node v is the root.
Input: Position< E >: Output: boolean.

iterator(): Return an iterator of the positions(nodes) of T3,
Input: None; Qutput: Iterator< Position<E > >.
replace(v.¢): Replace the element stored at node ¢ with ¢
and return the old element. Input: Position< E>, E: Qutput:
E.

i ADT Binary Tree< E> }7
A binary tree is an extension of a tree in which each non-leaf
has at most two children. Objects of type ADT Binary Tree

support the operations of the latter type plus the following
additional operations.

left(r): Return the left child of ¢: illegal if v has no left child!.
Input: Position< E>: Qutput: Position<E >.

rightic): Return the right child of ¢: illegal if v has no right
child!. Input: Position< E >: Qutput: Position<E >.
hasLeft(v): Return true if v has a left child. false otherwise.
Input: Position< E >: Output: boolean.

hasRight(¢): Return true if v has a right child. false other-
wise. Input: Position< E >; OQutput: boolean.

{ ADT Priority Queune- K‘VJ
A priority queue is a container capable of lolding a number
of entries. Each entry is a kev-value pair: keys need not be
distinet. It supports the following operatious.

insert(/.¢): Insert a new entry with kev & and value ¢ into
the priority queue and return the new entryv. Input: K. V:
Output: Entry.

min(): Return. but do uot remove, an entry in the prior-
ity queue with the smallest key. Illegal if priority queue is
empty!. Input: None: Output: Entry.

removeMin(): Remove and return an entry in the prior-
ity queue with the smallest key. Illegal if priority queue is
empty!. Input: None; Qutput: Entry.

Set- E -
add(newElement): Add the specified element to this set
if it is not already present. If this set already contains the
specified element, the call leaves this set unchanged Input:
E: Output: None.

contains(checkElement): Return true if this set contains
the specified element i.e. if checkElement is a member of this
set. Input: E: Output: boolean.

remove(remElement): Remove the specified element
from this set if it is present. Input: E; Output: None.
addAll(addSet): Add all of the elements in the set addSet
to this set if the are not already present. The addAll operation
effectively modifies this set so that its new value is the union
of the two sets. Input: Set<E>: Output: None.

cor: ainsAll(checkSet): ..Return true if this set contains
all of the elements of the specified set i.e. returns true if
checkSet is a subset of this set. Input: Set<E>: Qutput:
boolean.

removeAll(remSet): Remove from this set all of its el-
ements that are contained in the specified set. This opera-
tion effectively modifies this set so that its new value is the
asymmetric set difference of the two sets. Input: Set<E >;
Qutput: None.

retainAll(retSet): Retain only the elements in this set
that are contained in the specified set. This operation effec-
tively modifies this set so that its new value is the intersection
of the two sets. Input: Set<E>; Qutput: None.
iterator(): Return an iterator of the elements in this set.
The elements are returned in no particular order. Input:
None; Output: Iterator<E>.

